Earth

This is shown by the first comprehensive multi-model-based assessment of so-called Durban Platform scenarios, conducted by a team of international scientists led by the Potsdam Institute for Climate Impact Research (PIK) and the Fondazione Eni Enrico Mattei (FEEM) in Italy. The Durban Platform is the current negotiation track at the Warsaw climate talks that aims to reach a global climate agreement by 2015 to come into effect in 2020.

An international team of scientists has shown for the first time that atoms can work collectively rather than independently of each other to share light.

Quantum physicists have long discussed such an effect, but it has not been seen before in an experiment.

The team included scientists from ETH Zürich (a leading university in Switzerland) who performed the experiment and theoretical scientists from the Université de Sherbrooke in Québec and the University of Calgary in Alberta.

When you squeeze atoms, you don't get atom juice. You get magnets.

According to a new theory by Rice University scientists, imperfections in certain two-dimensional materials create the conditions by which nanoscale magnetic fields arise.

— Have you ever wondered why some ice cubes are as clear as glass, or why bakers use sugar, even in savory breads? Celebrity chef Alton Brown answers these questions in the American Chemical Society's (ACS') latest Bytesize Science episode. The video is available now on http://www.BytesizeScience.com.

New research suggests that the Amazon rainforest may be more able to cope with dry conditions than previously predicted. Researchers at the University of Exeter and Colorado State University used a computer model to demonstrate that, providing forest conservation measures are in place, the Amazon rainforest may be more able to withstand periods of drought than has been estimated by other climate models.

In a major new international report, experts conclude that the acidity of the world's ocean may increase by around 170% by the end of the century bringing significant economic losses. People who rely on the ocean's ecosystem services – often in developing countries - are especially vulnerable.

Sediment behind milldams in Pennsylvania preserved leaves deposited just before European contact that provide a glimpse of the ancient forests, according to a team of geoscientists, who note that neither the forests nor the streams were what they are today.

BUFFALO, N.Y. ─ Stingrays swim through water with such ease that researchers from the University at Buffalo and Harvard University are studying how their movements could be used to design more agile and fuel-efficient unmanned underwater vehicles.

The vehicles could allow researchers to more efficiently study the mostly unexplored ocean depths, and they could also serve during clean up or rescue efforts.

In a collaborative effort, researchers in the United States and the United Kingdom have developed a new technique that will help them optimize the transport barrier, or pedestal, in fusion plasmas, which will be key to increasing future fusion power performance. This work has been recognized with the 2013 APS John Dawson Award for Excellence in Plasma Physics Research.

If you want to catch a firefly, any old glass jar will do. But when you're trying to bottle a star—the goal of fusion energy research—the bottle needs to be very special. A tokamak is one type of fusion bottle, capable of holding extremely hot plasma (10 times hotter than the sun) and keeping it stable while harvesting the prodigious amounts of energy produced in the fusion process. Of course, the trick is to keep the hot stuff in. And this is a complicated task.

A team of Chinese and American scientists has learned how to maintain high fusion performance under steady conditions by exploiting a characteristic of the plasma itself: the plasma self-generates much of the electrical current needed for plasma containment in a tokamak fusion reactor. This self-generated, or "bootstrap," current has significant implications for the cost-effectiveness of fusion power.

Although oxygen is required to sustain life, oxygen sucks the life out of fusion by radiating away too much power from the high-temperature plasma. Accordingly, great efforts are expended to reduce the oxygen found in fusion facilities. Surprisingly, recent laboratory experiments and atomistic simulations have found that the oxygen bound by lithium at the walls of fusion devices plays a key role in improving plasma performance.

Recent experiments provide the first assessment of the toughness of a novel lithium coating in the face of intense bombardment by very hot plasma in the divertor region of fusion devices. The results show that this coating can shield the divertor region, which vents plasma exhaust, for 10 times longer than previously expected.

If confirmed by further research, this type of lithium treatment could alleviate widespread concerns that liquid-lithium plasma-facing components will rapidly overwhelm the core of the plasma with impurities and abort fusion reactions.

Materials are widely recognized as one of the critical remaining challenges for making fusion a commercially viable energy source. In a future fusion power plant, the materials surrounding and interacting with the plasma must survive in an extremely hostile environment for up to two years to produce electricity reliably, safely and economically.

Advanced computer codes are helping scientists reimagine how they might initiate a fusion reaction in the center of a tokamak, a doughnut-shaped experimental vessel. These simulations are also shedding new light on complex phenomena in magnetic fields.