Earth

URBANA, Ill. - From a global trade and agriculture perspective, the world heavily depends on the Midwest. The United States is the biggest exporter in the world of primary foodstuffs, such as corn and soybean, with most of that predominantly produced by Midwest farmers.

Despite record-high yields of corn and soybean across the United States in 2014, climate scientists warn that rising temperatures and future extreme weather may soon put crop yields like this in danger.

For more than a week the weather over the continental United States has been punctuated by extreme events. NASA analyzed satellite data that measured the heavy precipitation over ten days from late January to early February.

The weather patterns that typically bring moisture to the Southwest are becoming more rare, an indication that the region is sliding into the drier climate state predicted by global models, according to a new study.

"A normal year in the Southwest is now drier than it once was," said Andreas Prein, a researcher at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, who led the study. "If you have a drought nowadays, it will be more severe because our base state is drier."

As the world grows more connected, "out of sight, out of mind" looms as a perilous consequence of globalization. A sustainability scholar presents an integrated way to track the many footprints that are made in global transactions in the journal Frontiers in Ecology and the Environment this month.

Graphene, a material consisting of a single layer of carbon atoms, has been touted as the strongest material known to exist, 200 times stronger than steel, lighter than paper, and with extraordinary mechanical and electrical properties. But can it live up to its promise?

A stiff upper layer of ice that formed atop of the Greenland Ice Sheet during the Holocene era may be causing the deceleration of ice flow within, a new study suggests. A better understanding of the inner nature of the Greenland Ice Sheet (GrIS) is critical for estimating its mass loss in the future, and thus sea level rise. While the edges of the Greenland Ice Sheet (GrIS) have been melting at an accelerated rate over recent years, some mystery surrounds the center of this massive body of ice, which has grown thicker.

New findings from an international collaboration led by Canadian scientists may eventually lead to a theory of how superconductivity initiates at the atomic level, a key step in understanding how to harness the potential of materials that could provide lossless energy storage, levitating trains and ultra-fast supercomputers.

Scientists have created the first map that shows how the Greenland Ice Sheet has moved over time, revealing that ice in the interior is moving more slowly toward the edges than it has, on average, during the past 9,000 years.

The findings, which researchers said don't change the fact that the ice sheet is losing mass overall and contributing to sea level rise, are published in the Feb. 5 issue of Science. Along Greenland's periphery, many glaciers are rapidly thinning. However, the vast interior of Greenland is slowly thickening, a process the new study clarifies.

It takes a perfect flick of the wrist and just the right angle to get a disk-shaped stone to skip across the surface of the water multiple times. So why is it so easy to get such impressive water-skipping performance from an elastic ball with only a mediocre launch?

Researchers at Utah State University's College of Engineering say they have some answers that may offer new insight into water impact physics - an important area of study in naval applications and maritime and ocean engineering.

WASHINGTON, Feb. 3, 2016 -- Brewers usually fill their kegs with carbon dioxide or nitrogen. But every once in a while, some brewers will post a video announcing they have made beer with helium -- and have the high voices to prove it. While these videos are eventually exposed as pranks, the scientific possibility of helium beer is real. Speaking of Chemistry's Matt Davenport investigates with some scientist friends who gave it a try. Check out the video here: https://youtu.be/kV9k9Gpjsgg.

Diatoms are unicellular algae that are native in many waters. They are a major component of marine phytoplankton and the food base for a large variety of marine organisms. In addition, they produce about one fifth of the oxygen in the atmosphere and are therefore a key factor for our global climate. However, these algae, which measure only a few micrometers, have yet another amazing ability: they can "smell" stones.

Scientists at the University of Liverpool have shown that it is possible to design and construct interfaces between materials with different structures by making a bridge between them.

The advance is reported in Nature Chemistry.

It is usually possible to make well-controlled interfaces when two materials have similar crystal structures, yet the ability to combine materials with different crystal structures has lacked the accurate design rules that increasingly exists in other areas of materials chemistry.

Is lignin the crude oil of the future? Maybe so, thanks to the Sun and photocatalysts!

University of Tsukuba Faculty of Pure and Applied Sciences Associate Professor Takahiro Kondo and Professor Junji Nakamura, in cooperation with Researcher Donghui Guo and Professor Susumu Okada of the same faculty, have shown from detailed measurements that in atomically flat areas of a nitrogen-doped graphite surface in the absence of external magnetic fields, Landau levels manifest corresponding to super strong magnetic fields of approximately 100 tesla across bilayer graphene.

What does it sound like when liquids solidify very fast?

Researchers from the Centre of Excellence in Computational Nanoscience at Aalto University and their colleagues at Brown University and the University of California, Irvine, have developed a theory that answers this question by combining for the first time the understanding of vibrations in solid material and the solidification of liquid at a microscopic level. The results were published in the renowned scientific publication Physical Review Letters in January.