Gabriele Saleh, a research fellow at MIPT, and Prof. Artem Oganov, a Laboratory Supervisor at MIPT and Professor at the Skolkovo Institute of Science and Technology (Skoltech), have discovered what causes the stability of various compounds that are not commonly found in 'textbook' chemistry.
The reorganisation of the chemical interactions results in the stability of the 'new' structure of the compounds. The results of the study have been published in the journal Physical Chemistry & Chemical Physics.
 This is a sketch of the thermal excitation of the magnetic sublattices, consisting of two Iron (Fe) and one Gadolinium (Gd) lattice sides: the excitation causes the emission of a magnetic spin wave, a so-called magnon, which propagates within the lattice. Credit: Ill./©: Andreas Kehlberger
                 This is a sketch of the thermal excitation of the magnetic sublattices, consisting of two Iron (Fe) and one Gadolinium (Gd) lattice sides: the excitation causes the emission of a magnetic spin wave, a so-called magnon, which propagates within the lattice. Credit: Ill./©: Andreas Kehlberger