Earth

New particles form in the lowest layer of Earth's atmosphere through condensation of highly oxygenated compounds, a new study shows, and without sulfuric acid - previously considered essential to nucleation. Future atmospheric models should take these factors into account, the study's authors say, to better represent the process. Cloud condensation nuclei, or CCNs, are small particles on which water vapor from a cloud condenses.

Data collected via airplane when a hurricane is developing can improve hurricane intensity predictions by up to 15 percent, according to Penn State researchers who have been working with the National Oceanic and Atmospheric Administration and the National Hurricane Center to put the new technique into practice.

Prior to this study, no hurricane prediction model incorporated the vast amount of data collected by 'hurricane hunters,' which are NOAA or U.S. Air Force airborne reconnaissance missions that fly into hurricanes to collect data.

BROOKLYN, NY -- The 3rd Generation Partnership Project (3GPP), comprising seven telecommunications standard development organizations, will soon choose among channel models to adopt as testing standards for 5G cellular systems. However, a new study by Theodore (Ted) S.

PITTSBURGH- A research group from the CERN Cloud experiment, including scientists from Carnegie Mellon University's College of Engineering and Mellon College of Science, have uncovered the processes behind the formation and evolution of small atmospheric particles free from the influence of pollution. Their findings are key to creating accurate models to understand and predict global climate change. The findings are published in the May 26 issue of Nature.

ARGONNE, Ill. -- A team of scientists working at the U.S. Department of Energy's (DOE) Argonne National Laboratory has created a new material, called "rewritable magnetic charge ice," that permits an unprecedented degree of control over local magnetic fields and could pave the way for new computing technologies.

WASHINGTON, D.C., May 25, 2016 - Scientists are studying how climate change will affect the speed of sound under water to help prepare the U.S. Navy for operating in progressively warmer oceans.

Light doesn't travel very far underwater so the navy uses sound to transmit messages. The speed of underwater sound depends on a combination of temperature, salinity and pressure. It's a complicated equation, but temperature is the biggest factor, says Glen Gawarkiewicz, an oceanographer at Woods Hole Oceanographic Institution in Massachusetts.

WASHINGTON -- GPS-based navigation, communication systems, electrical power grids and financial networks all rely on the precise time kept by a network of around 500 atomic clocks located around the world.

In The Optical Society's journal for high impact research, Optica, researchers present a way to use optical clocks for more accurate timekeeping than is possible with today's system of traditional atomic clocks. The researchers also measured an optical clock's frequency -- analogous to it's "ticking" -- with unprecedented precision.

Drivers can see trains approaching but cannot accurately judge their speed when proceeding through a passive level crossing, a QUT and Australasian Centre for Rail Innovation collaborative study has found.

For the steel industry, there may be a way out of the dilemma that has existed since people began processing metal. Scientists from the Max-Planck-Institut für Eisenforschung in Düsseldorf (Germany) are presenting a new type of metallic material that is extremely strong, but simultaneously ductile. Up until now, one material property could only be improved at the expense of the other - something that is being changed by the Düsseldorf-based researchers, who are entering new terrain in the development of metallic materials.

The researchers examined data from research and monitoring reports from the years 2000-2012, to see what chemicals have been analysed in Baltic Sea fish.

A new analysis of global data related to wildfire, published by the Royal Society, reveals major misconceptions about wildfire and its social and economic impacts.

Prof. Stefan Doerr and Dr Cristina Santin from Swansea University's College of Science carried out detailed analysis of global and regional data on fire occurrence, severity and its impacts on society.

Their research, published in Philosophical Transactions of the Royal Society B, looked at charcoal records in sediments and isotope-ratio records in ice cores, to build up a picture of wildfire in the past.

MELBOURNE, FLA. -- Scientists at Florida Institute of Technology used a high-speed camera to capture an amazing lighting flash from a May 20 storm near the university's Melbourne campus.

The flash was recorded at 7,000 frames per second (FPS). The playback speed seen in the video is 700 FPS.

The video was captured as part of the process of testing the camera for its ultimate use, which will be centered on capturing and studying the dynamics and energetics of the upward electrical discharges from thunderstorms known as starters, jets and gigantic jets.

PULLMAN, Wash. - Washington State University researchers have found that greenhouse-gas emissions from lakes and inland waterways may be as much as 45 percent greater than previously thought.

Their study, published today in Environmental Research Letters, has implications for the global carbon budget and suggests that terrestrial ecosystems may not be as good a carbon reservoir as scientists thought.

WASHINGTON, D.C., May 24, 2016 -- Protonated methane, a.k.a. CH5+, is a highly unusual molecule that scientists and astronomers suspect may be found within the interstellar medium where stars and planets are formed.

To identify molecules on Earth or in outer space, scientists typically record the spectrum of light absorbed -- each molecule has its own unique spectrum. CH5+, consists of a central carbon atom with five hydrogen atoms constantly moving around it, which makes it difficult to interpret its spectrum.

WASHINGTON, D.C, May 24, 2016 - Along with being a "girl's best friend," diamonds also have remarkable properties that could make them ideal semiconductors. This is welcome news for electronics; semiconductors are needed to meet the rising demand for more efficient electronics that deliver and convert power.