Earth

Chemists and physicists have succeeded in getting custom-shaped microparticles to interact and self-assemble in a controlled way in a liquid crystal.

The research, federally funded by the National Science Foundation, appears in the Nov. 20 edition of the journal Science.

"We're learning the rules about how these lithographic particles self-assemble," said Thomas G. Mason, a UCLA professor of chemistry and physics and a member of the California NanoSystems Institute at UCLA. "This method may enable us to cause them to assemble in desired configurations."

Tackling climate change by reducing carbon dioxide and other greenhouse emissions will have major direct health benefits in addition to reducing the risk of climate change, especially in low-income countries, according to a series of six papers appearing today (Wed., Nov. 25) in the British journal The Lancet.

The annual rate of increase in carbon dioxide emissions from fossil fuels has more than tripled in this decade, compared to the 1990s, reports an international consortium of scientists, who paint a bleak picture of the Earth's future unless "CO2 emissions [are] drastically reduced."

New Haven, Conn.—The world's oceans are absorbing less carbon dioxide (CO2), a Yale geophysicist has found after pooling data taken over the past 50 years. With the oceans currently absorbing over 40 percent of the CO2 emitted by human activity, this could quicken the pace of climate change, according to the study, which appears in the November 25 issue of Geophysical Research Letters.

Cambridge, Md. (November 24, 2009) – New research on bacterial communities throughout six large Arctic river ecosystems reveals predictable temporal patterns, suggesting that scientists could use these communities as markers for monitoring climate change in the polar regions. The study, published this week in the Proceedings of the National Academy of Sciences Early Edition, shows that bacterial communities in the six rivers shifted synchronously over time, correlating with seasonal shifts in hydrology and biogeochemistry.

WASHINGTON, D.C. November 13, 2009 -- A team of researchers at the Massachusetts Institute of Technology has developed a new modeling methodology for determining the capacity and assessing the risks of leakage of potential underground carbon-dioxide reservoirs.

TORONTO, November 23, 2009 - The time of day matters to forest trees dealing with drought, according to a new paper produced by a research team led by Professor Malcolm Campbell, University of Toronto Scarborough's vice-principal for research and colleagues in the department of cell and systems biology at the St. George campus.

Using a technique normally used for detecting weak tremor, scientists at the Georgia Institute of Technology discovered that the 2004 magnitude 6 earthquake along the Parkfield section of the San Andreas fault exhibited almost 11 times more aftershocks than previously thought. The research appears online in Nature Geoscience and will appear in print in a forthcoming edition.

A bit of imagination on the part of a measuring instrument wouldn't be a bad thing. It could help to add data from areas where the instrument is unable to measure. However, it must do so constructively. In order to infer missing data in an astronomical measurement with more than just imagination, physicists at the Max Planck Institute for Astrophysics have formulated a theory of spatial perception called information field theory. The scientists have developed a series of rules for reconstituting incomplete and noisy image data.

Quantum computing promises ultra-fast communication, computation and more powerful ways to encrypt sensitive information. But trying to use quantum states as carriers of information is an extremely delicate business. Now two physicists have shown, mathematically, how to gently tease out unwanted knots in quantum communication, while keeping the information intact. Their work is reported in the current issue of Physical Review Letters and highlighted with a Viewpoint in Physics (http://physics.aps.org/).

SALT LAKE CITY, Nov. 23, 2009 – In a provocative new study, a University of Utah scientist argues that rising carbon dioxide emissions – the major cause of global warming – cannot be stabilized unless the world's economy collapses or society builds the equivalent of one new nuclear power plant each day.

"It looks unlikely that there will be any substantial near-term departure from recently observed acceleration in carbon dioxide emission rates," says the new paper by Tim Garrett, an associate professor of atmospheric sciences.

WASHINGTON, D.C. November 18, 2009 -- When people have malaria, they are infected with Plasmodium parasites, which enter the body from the saliva of a mosquito, infect cells in the liver, and then spread to red blood cells. Inside the blood cells, the parasites replicate and also begin to expose adhesive proteins on the cell surface that change the physical nature of the cells in the bloodstream.

WASHINGTON, D.C. November 13, 2009 -- Understanding mixing in the ocean is of fundamental importance to modeling climate change or predicting the effects of an El Niño on our weather. Modern ocean models primarily incorporate the effects of winds and tides. However, they do not generally take into account the mixing generated by swimming animals.

More than 60 years ago, oceanographers predicted that the effect of swimming animals could be profound. Accounting for this effort has proven difficult, though, so it has not entered into today's models.

WASHINGTON, D.C. November 18, 2009 -- A butterfly's proboscis looks like a straw -- long, slender, and used for sipping -- but it works more like a paper towel, according to Konstantin Kornev of Clemson University. He hopes to borrow the tricks of this piece of insect anatomy to make small probes that can sample the fluid inside of cells.

Kornev will present his work next week at the 62nd Annual Meeting of the American Physical Society's (APS) Division of Fluid Dynamics will take place from November 22-24 at the Minneapolis Convention Center.