Earth

OAK RIDGE, Tenn., Oct. 18, 2010 -- Theoretical work done at the Department of Energy's Oak Ridge National Laboratory has provided a key to understanding an unexpected magnetism between two dissimilar materials.

Geophysicists claim conventional understanding of Earth's deep water cycle needs revision

RIVERSIDE, Calif. – A popular view among geophysicists is that large amounts of water are carried from the oceans to the deep mantle in "subduction zones," which are boundaries where the Earth's crustal plates converge, with one plate riding over the other.

In five different studies presented at the American College of Gastroenterology's (ACG) 75th Annual Scientific meeting in San Antonio, researchers explored the impact of various factors on increasing rates of Clostridium difficile infection (C. difficile), such as the use of proton pump inhibitors (PPIs) and the substantial increase in antibiotic use due to new National Hospital Quality Measures; strategies to combat high rates of C. difficile infections; and cutting‐edge treatments for this potentially deadly—and quite common—infection.

NEW YORK -- Water vapor and clouds are the major contributors to Earth's greenhouse effect, but a new atmosphere-ocean climate modeling study shows that the planet's temperature ultimately depends on the atmospheric level of carbon dioxide.

(Santa Barbara, Calif.) –– Physicists at UC Santa Barbara have succeeded in combining laser light with trapped electrons to detect and control the electrons' fragile quantum state without erasing it. This is an important step toward using quantum physics to expand computing power and to communicate over long distances without the possibility of eavesdropping. The work appears online today at Science Express.

Researchers have developed a method for curbing the growth of crystals that form cystine kidney stones. Their findings, which appear in the latest issue of the journal Science, may offer a pathway to a new method for the prevention of kidney stones.

The study was conducted by researchers at New York University's Department of Chemistry and its Molecular Design Institute, NYU School of Medicine, and the Medical College of Wisconsin.

New research by University of British Columbia physicists indicates that high-temperature superconductivity in copper oxides is linked to what they term 'incoherent excitations'--a discovery that sheds light on the electronic response of these materials before they become superconducting.

The study marks the first time researchers have been able to directly measure when electrons in a super conductor behave as independent well-defined particles, and when they evolve into ill-defined many-body entities.

Instruments designed by a UT Dallas professor to measure atmospheric components on the surface of Mars have uncovered important clues about the planet's atmosphere and climate history.

The findings, published in a recent issue of the journal Science, reveal how carbon dioxide isotopes have reacted to volcanic activity, water and weathering – thus forming a more complete picture of the current Martian atmosphere.

The NASA mission in which this work was accomplished was the Phoenix Lander, an unmanned spacecraft deployed to Mars in 2008.

New Haven, Conn.—Sixty-three percent of Americans believe that global warming is happening, but many do not understand why, according to a national study conducted by researchers at Yale University.

Physicists pave the way for graphene-based spin computer

RIVERSIDE, Calif. – Physicists at the University of California, Riverside have taken an important step forward in developing a "spin computer" by successfully achieving "tunneling spin injection" into graphene.

Curveballs curve and fastballs are fast, but new research suggests that no pitcher can make a curveball "break" or a fastball "rise."

Led by Arthur Shapiro of American University and Zhong-Lin Lu of the University of Southern California, the researchers explain the illusion of the curveball's break in a publicly available study in the journal PLoS ONE.

Why it's hard to crash the electric grid

Last March, the U.S. Congress heard testimony about a scientific study in the journal Safety Science. A military analyst worried that the paper presented a model of how an attack on a small, unimportant part of the U.S. power grid might, like dominoes, bring the whole grid down.

When it comes to gambling, many people rely on game theory, a branch of applied mathematics that attempts to measure the choices of others to inform their own decisions. It's used in economics, politics, medicine -- and, of course, Las Vegas. But recent findings from a Tel Aviv University researcher suggest that we may put ourselves on the winning side if we look to bacteria instead.

Researchers used Einstein's famous E=mc2 equation and the Large Hadron Collider to recreate a miniature version of the event at the origins of our Universe, and the first findings from their work were published in the journal Physical Review Letters. Dr. Andreas Warburton of McGill's Department of Physics made leading contributions to the analysis of data from the experiment, known as "ATLAS," meaning the findings have a special significance for Canadian science.