Earth

Researchers find mathematical patterns to forecast earthquakes

Researchers from the Universidad Pablo de Olavide (UPO) and the Universidad de Sevilla (US) have found patterns of behaviour that occur before an earthquake on the Iberian peninsula. The team used clustering techniques to forecast medium-large seismic movements when certain circumstances coincide.

The discovery by UCLA biochemists of a new method for preventing oxidation in the essential fatty acids of cell membranes could lead to a new class of more effective nutritional supplements and potentially help combat neurodegenerative disorders such as Parkinson's disease and perhaps Alzheimer's.

While polyunsaturated fatty acids are essential nutrients for everything from brain function to cell function, they are the most vulnerable components in human cells because of their high sensitivity to oxidative modifications caused by highly reactive oxygen molecules in the body.

Many coastal wetlands worldwide — including several on the U.S. Atlantic coast — may be more sensitive than previously thought to climate change and sea-level rise projections for the 21st century.

U.S. Geological Survey scientists made this conclusion from an international research modeling effort published today in the journal Geophysical Research Letters, a publication of the American Geophysical Union. Scientists identified conditions under which coastal wetlands could survive rising sea level.

Southampton researchers have estimated that sea-level rose by an average of about 1 metre per century at the end of the last Ice Age, interrupted by rapid 'jumps' during which it rose by up to 2.5 metres per century. The findings, published in Global and Planetary Change, will help unravel the responses of ocean circulation and climate to large inputs of ice-sheet meltwater to the world ocean.

New York, NY November 29, 2010 In 2008, experiments at The Fu Foundation School of Engineering and Applied Science at Columbia University established pure graphene, a single layer of graphite only one atom thick, as the strongest material known to mankind. This raised a question for Chris Marianetti, Assistant Professor in Columbia Engineering's Department of Applied Physics and Applied Mathematics: how and why does graphene break?

Thanks to collaborative work between scientists in Donostia-San Sebastian and the University of Kiel (Germany) it has been shown that it is possible to determine and control the number of atoms in contact between a molecule and a metal electrode of copper, at the same time as the electric current passing through the union being recorded. These results were published in the Nature Nanotechnology journal.

Washington, D.C. (November 30, 2010) -- Nuclear magnetic resonance (NMR) is one of the best tools for gaining insight into the structure and dynamics of molecules because nuclei in atoms within molecules will behave differently in a variety of chemical environments. Nuclei can be thought of as tiny compasses that align when placed in the field of a strong magnet. Similar to magnetic resonance imaging (MRI), conventional NMR uses short pulses of radio waves to drive nuclei away from equilibrium and a 'signal' emerges as nuclei slowly realign with the field.

Washington, D.C. (November 30, 2010) -- One of the holy grails of nanotechnology in medicine is to control individual structures and processes inside a cell. Nanoparticles are well suited for this purpose because of their small size; they can also be engineered for specific intracellular tasks. When nanoparticles are excited by radio-frequency (RF) electromagnetic fields, interesting effects may occur. For example, the cell nucleus could get damaged inducing cell death; DNA might melt; or protein aggregates might get dispersed.

Washington, D.C. (November 30, 2010) -- Quantum information processing is arguably one of the most fascinating facets of modern quantum physics.

A quantum computer operates with quantum bits (qubits) as units of information. Obeying the laws of quantum mechanics, such a computer would be capable of addressing several of the most difficult computational tasks unsolvable with present technology. In the past few decades, scientists learned to perform room-sized experiments to optically control and read out a small number of qubits.

TEMPE, Ariz. – Glass is something we all know about. It's what we sip our drinks from, what we look out of to see what the weather is like before going outside and it is the backbone to our high speed communications infrastructure (optical fibers).

Media coverage on HIV/AIDS has fallen by more than 70% in developed countries over the last 20 years, according to an international team of researchers.

While in the early 1990s, an average of 1.5 articles linked to HIV/AIDS could be found in every issue of the main broadsheet newspapers, levels of coverage have dropped to below 0.5 articles per newspaper issue since 2008. Coverage in French and US-based newspapers has decreased particularly dramatically during this period.

 International team of scientists describes swirling natural phenomena

(Santa Barbara, Calif.) –– Scientists can use cylinders as small as teapots to study the mechanisms involved in powerful hurricanes and other swirling natural phenomena.

Ancient wind held secret of life and death

The mystery of how an abundance of fossils have been marvellously preserved for nearly half a billion years in a remote region of Africa has been solved by a team of geologists from the University of Leicester's Department of Geology.

They have established that an ancient wind brought life to the region – and was then instrumental in the preservation of the dead.