Earth

Forests in the Pacific Northwest store more carbon than any other region in the United States, but our warming climate may undermine their storage potential.

The greatest climate change the world has seen in the last 100,000 years was the transition from the ice age to the warm interglacial period. New research from the Niels Bohr Institute at the University of Copenhagen indicates that, contrary to previous opinion, the rise in temperature and the rise in the atmospheric CO2 follow each other closely in terms of time. The results have been published in the scientific journal, Climate of the Past.

Using a newly developed analytical technique, a team led by scientists at USC was the first to identify long-hypothesized vitamin B deficient zones in the ocean.

"This is another twist to what limits life in the ocean," said Sergio Sañudo-Wilhelmy, professor of biological and earth sciences at the USC Dornsife College of Letters, Arts and Sciences and lead author on a paper about the vitamin-depleted zones that will appear in Proceedings of the National Academy of Sciences on July 23.

Scientists have discovered a potential cause of Earth's "icehouse climate" cooling trend of the past 45 million years. It has everything to do with the chemistry of the world's oceans.

"Seawater chemistry is characterized by long phases of stability, which are interrupted by short intervals of rapid change," says geoscientist Ulrich Wortmann of the University of Toronto, lead author of a paper reporting the results and published this week in the journal Science.

How much ash will be injected into the atmosphere during Earth's next volcanic eruption? Recent eruptions have demonstrated our continued vulnerability to ash dispersal, which can disrupt the aviation industry and cause billions of dollars in economic loss. Scientists widely believe that volcanic particle size is determined by the initial fragmentation process, when bubbly magma deep in the volcano changes into gas-particle flows.

The volcanic region of La Garrotxa, with some forty volcanic cones and some twenty lava flows, is considered to be the best conserved region in the Iberian Peninsula. It is also the youngest volcanic area. Although the approximate age of some of these volcanic constructions is known, one of the main problems when studying volcanoes is to pinpoint the chronology of each of their eruptions. Several geochronological studies have been conducted, but existing data is scarce and imprecise.

The amount of structural damage that radiation causes in electronic materials at the atomic level may be at least ten times greater than previously thought.

That is the surprising result of a new characterization method that uses a combination of lasers and acoustic waves to provide scientists with a capability tantamount to X-ray vision: It allows them to peer through solid materials to pinpoint the size and location of detects buried deep inside with unprecedented precision.

A review article appearing in the July 20, 2012, issue of the journal Science describes groundbreaking discoveries that have emerged from the Relativistic Heavy Ion Collider (RHIC) at the U.S. Department of Energy's Brookhaven National Laboratory, synergies with the heavy-ion program at the Large Hadron Collider (LHC) in Europe, and the compelling questions that will drive this research forward on both sides of the Atlantic.

WASHINGTON -– U.S. Naval Research Laboratory scientists from the Radio Astrophysics and Sensing Section of the Remote Sensing Division in conjunction with radio astronomers and engineers from the National Radio Astronomy Observatory (NRAO), Socorro, N.M., achieve "First Light" image, May 1, 2012, at frequencies below 1-gigahertz (GHz) on the Jansky Very Large Array (JVLA).

The hinds chose the food according to energy and fat content. According to Ceacero, "food quality gets lower and lower the further away we move from the time in which the food is put out. In this way, the dominant hinds receive more energy in their diet whereas their subordinates do still get to eat enough but only the poor quality food that is left behind."

The same goes for cows and sheep

A new experiment conducted at the Joint Quantum Institute (JQI)* examines the relationship between quantum coherence, an important aspect of certain materials kept at low temperature, and the imperfections in those materials. These findings should be useful in forging a better understanding of disorder, and in turn in developing better quantum-based devices, such as superconducting magnets.

TORONTO, ON – Humans get most of the blame for climate change, with little attention paid to the contribution of other natural forces. Now, scientists from the University of Toronto and the University of California Santa Cruz are shedding light on one potential cause of the cooling trend of the past 45 million years that has everything to do with the chemistry of the world's oceans.

PASADENA, Calif.—The powerful magnitude-8.6 earthquake that shook Sumatra on April 11, 2012, was a seismic standout for many reasons, not the least of which is that it was larger than scientists thought an earthquake of its type could ever be. Now, researchers from the California Institute of Technology (Caltech) report on their findings from the first high-resolution observations of the underwater temblor, they point out that the earthquake was also unusually complex—rupturing along multiple faults that lie at nearly right angles to one another, as though racing through a maze.

AMHERST, Mass. – Physicists Andrea Pocar and Krishna Kumar of the University of Massachusetts Amherst, part of an international research team, recently reported results of an experiment conducted at the Enriched Xenon Observatory (EXO), located in a salt mine one-half mile under Carlsbad, New Mexico, part of a decades-long search for evidence of the elusive neutrino-less double-beta decay of Xenon-136.

Scientists have recreated the extreme conditions at the boundary between Earth's core and its mantle, 2,900 km beneath the surface. Using the world's most brilliant beam of X-rays, they probed speck-sized samples of rock at very high temperature and pressure to show for the first time that partially molten rock under these conditions is buoyant and should segregate towards the Earth's surface. This observation is a strong evidence for the theory that volcanic hotspots like the Hawaiian Islands originate from mantle plumes generated at the Earth's core-mantle boundary.