Earth
RALEIGH, N.C. -- Methane hydrate, an ice-like material made of compressed natural gas, burns when lit and can be found in some regions of the seafloor and in Arctic permafrost.
Thought to be the world's largest source of natural gas, methane hydrate is a potential fuel source, and if it "melts" and methane gas is released into the atmosphere, it is a potent greenhouse gas. For these reasons, knowing where methane hydrate might be located, and how much is likely there, is important.
The snow may be melting, but it is leaving pollution behind in the form of micro- and nano-plastics according to a McGill study that was recently published in Environmental Pollution. The pollution is largely due to the relatively soluble plastics found in antifreeze products (polyethylene glycols) that can become airborne and picked up by the snow.
He and his research group have found a way to more precisely determine the properties of these materials, because they can better account for the underlying disorder. Their article has been designated "ACS Editors' Choice" by the editors of the American Chemical Society journals, who recognise the "importance to the global scientific community" of the Leipzig researchers' work and see it as a breakthrough in the accurate description of phase transition phenomena in disordered porous materials.
Why are the red, yellow, and blue colours used in the world's oldest knotted-pile carpet still so vivid and bright, even after almost two and a half thousand years? Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg have now been able to uncover the secrets behind the so-called Pazyryk carpet using high-resolution x-ray fluorescence microscopy. Their findings have been published in the journal Scientific Reports.
Simple systems can reproduce faster than complex ones. So, how can the complexity of life have arisen from simple chemical beginnings? Starting with a simple system of self-replicating fibres, chemists at the University of Groningen have discovered that upon introducing a molecule that attacks the replicators, the more complex structures have an advantage. This system shows the way forward in elucidating how life can originate from lifeless matter. The results were published on 10 March in the journal Angewandte Chemie.
COLUMBUS, Ohio - Electricity may slow - and in some cases, stop - the speed at which breast cancer cells spread through the body, a new study indicates.
The research also found that electromagnetic fields might hinder the amount of breast cancer cells that spread. The findings, published recently in the journal Bioelectricity, suggest that electromagnetic fields might be a useful tool in fighting cancers that are highly metastatic, which means they are likely to spread to other parts of the body, the authors said.
A global review of coastal drowning science has found there is only one study worldwide that has evaluated beach safety education programs in schools.
Researchers from UNSW's Beach Safety Research Group have conducted the first in-depth review specific to coastal drowning.
The study, published in PLOS ONE, reviewed 146 coastal drowning studies from around the world.
GAINESVILLE, Fla. --- In a genetic surprise, ancient DNA shows the closest family members of an extinct bird known as the Haitian cave-rail are not in the Americas, but Africa and the South Pacific, uncovering an unexpected link between Caribbean bird life and the Old World.
While play and playfulness have been studied well in children, their structure and consequences are understudied in adults. A new article published in Social and Personality Psychology Compass highlights available research on this topic and also examines why playfulness is important in romantic relationships.
Drugs can only work if they stick to their target proteins in the body. Assessing that stickiness is a key hurdle in the drug discovery and screening process. New research combining chemistry and machine learning could lower that hurdle.
The new technique, dubbed DeepBAR, quickly calculates the binding affinities between drug candidates and their targets. The approach yields precise calculations in a fraction of the time compared to previous state-of-the-art methods. The researchers say DeepBAR could one day quicken the pace of drug discovery and protein engineering.
How important is fame? What about self-acceptance? Benevolence? The messages children between the ages of 8 and 12 glean from TV play a significant role in their development, influencing attitudes and behaviors as they grow into their teenage years and beyond, UCLA psychologists say.
Now, a new report by UCLA's Center for Scholars and Storytellers assesses the values emphasized by television programs popular with tweens over each decade from 1967 to 2017, charting how 16 values have waxed and waned in importance during that 50-year span.
Researchers from Louisiana State University have introduced a smart quantum technology for the spatial mode correction of single photons. In a paper featured on the cover of the March 2021 issue of Advanced Quantum Technologies, the authors exploit the self-learning and self-evolving features of artificial neural networks to correct the distorted spatial profile of single photons.
WASHINGTON, March 16, 2021 -- Sea-based fish farming systems using net pens are hard on the environment and the fish. A closed cage can improve fish welfare, but fresh seawater must be continuously circulated through the cage. However, ocean waves can cause this circulating water to slosh inside the cage, creating violent motions and endangering the cage and the fish.
A study using a scale-model fish containment system is reported in Physics of Fluids, by AIP Publishing. The study shows why violent sloshing motions arise and how to minimize them.
Like a well-trained soldier, a white blood cell uses specialized abilities to identify and ultimately destroy dangerous intruders, including creating a protrusion to effectively reach out, lock-on, probe, and possibly attack its prey. Researchers reporting March 16 in Biophysical Journal show in detail that these cells take seconds to morph into these highly rigid and viscous defensive units.
Stem-cell-derived organoids that swell up with tears could shed light on the biology of crying and dry-eye disease, suggests a study publishing March 16 in the journal Cell Stem Cell. Although regenerative therapies using human tear-gland organoids will not be possible anytime soon, these researchers have demonstrated that the organoids can engraft, integrate, and produce mature tear products upon transplantation into mouse tear glands.