Earth

Scientists have filled a gaping hole in the world's climate records by reconstructing 600 years of soil-moisture swings across southern and central South America. Along with documenting the mechanisms behind natural changes, the new South American Drought Atlas reveals that unprecedented widespread, intense droughts and unusually wet periods have been on the rise since the mid-20th century. It suggests that the increased volatility could be due in part to global warming, along with earlier pollution of the atmosphere by ozone-depleting chemicals.

Researchers from the Moscow Institute of Physics and Technology, Ivannikov Institute for System Programming, and the Harvard Medical School-affiliated Schepens Eye Research Institute have developed a neural network capable of recognizing retinal tissues during the process of their differentiation in a dish. Unlike humans, the algorithm achieves this without the need to modify cells, making the method suitable for growing retinal tissue for developing cell replacement therapies to treat blindness and conducting research into new drugs.

If you stack two layers of graphene one on top of the other, and rotate them at an angle of 1.1º (no more and no less) from each other - the so-called magic-angle, experiments have proven that the material can behave like an insulator, where no electrical current can flow, and at the same can also behave like a superconductor, where electrical currents can flow without resistance.

NEW YORK, July 7, 2020--TARA Biosystems today reported study results demonstrating the ability of TARA's in vitro human cardiac models to reproduce drug responses similar to those observed in humans. Appearing in the Journal of Pharmacological and Toxicological Methods, these findings further support the use of TARA's in vitro human cardiac models as a robust, translational platform for the evaluation of new medicines. The study was done in collaboration with Amgen, Inc.

Look deep inside our cells, and you'll find that each has an identical genome -a complete set of genes that provides the instructions for our cells' form and function.

But if each blueprint is identical, why does an eye cell look and act differently than a skin cell or brain cell? How does a stem cell - the raw material with which our organ and tissue cells are made - know what to become?

The information critical to a nationwide priority of reducing health care disparities among minorities is incomplete and inaccurate, according to a new Rutgers study.

New platform uses cell-free synthetic biology to test for 17 contaminants, including lead, copper, pharmaceuticals and cosmetics

Tests cost pennies to make and minutes to work

Researchers tested the platform in Paradise, California, where wildfires caused toxins to enter the water supply

EVANSTON, Ill. -- A new platform technology can assess water safety and quality with just a single drop and a few minutes.

New York, NY--July 6, 2020--Most projections about climate change assume that, as temperatures rise, regions in the north high latitudes may become more suitable for the growth of vegetation, turning into cropland to feed increasing populations while also fixing more carbon dioxide (CO2) and slowing down climate change. Plants require appropriate temperature, water, and light conditions for photosynthesis and growth, so it seems logical that as temperatures increase in the northern high latitudes, plant photosynthesis, which uses CO2 to release oxygen, should also increase.

Organisms capable of photosynthesis--a biochemical process that converts solar energy into chemical energy--consist of special assemblies of proteins and pigments that capture the light energy efficiently. These assemblies are known as "light-harvesting complexes" (LHCs). They not only capture the sunlight but also initiate a series of events wherein energy is transmitted from one molecular complex to another, ultimately "trapping" the energy in the form of chemical bonds in organic compounds.

The applications of topological photonics have been intensively investigated, including one-way waveguide and topological lasers. Especially, the topological lasers have attracted broad attention in recent years, which have been proposed and demonstrated in various systems, including 1D edge state in 2D systems, 0D boundary state in 1D lattice and topological bulk state around band edge. Most of them are at microscale. The topological nanolaser with small footprint, low threshold and high energy-efficiency has yet to be explored.

In the cover article of the June 11 issue of the Journal of Medicinal Chemistry, a team of researchers at the Medical University of South Carolina, led by Sherine Chan, Ph.D., and James Chou, Ph.D., reports that a new vitamin K-based drug has proved effective in mouse models of medication-resistant seizures.

In physics, a very intuitive way of describing the evolution of a system proceeds via the specification of functions of the spatiotemporal coordinates. Yet, there often exist other degrees of freedom in terms of which the physical entities pertaining to a variety of structures can be seen to evolve and that are not amenable to a description via spatial coordinates.

Stem cells are central to organ development and renewal. In most organs, stem cells are located in specific regions and, in some cases, can be identified through several intrinsic properties, like molecular markers. They can differentiate into various types of cells and divide indefinitely to produce more stem cells. However, does this mean the stem cell at the top is immortal? Or can any cell overthrow this? The scientific community is in an open debate whether stem cells actually arise from intrinsic cell properties or from the collective dynamics of the tissue itself.

Writing in the leading academic journal, Nature, Cranfield academics are calling for global resilience to be shaped around the 'Five Capitals' - natural, human, social, built and financial. The academics believe that too often silos exist within Government and within organisations and businesses that mean risks are not anticipated quickly enough or prepared for well enough.

Elderly people are more prone to infectious diseases as the function of their immune system continuously declines with progression of age. This becomes especially apparent during seasonal influenza outbreaks or the occurrence of other viral diseases such as COVID-19. As the efficacy of vaccination in the elderly is strongly reduced, this age group is particularly vulnerable to such infectious pathogens and often shows the highest mortality rate. In addition to the age-related immune decline aged individuals are commonly affected by frailty that negatively impacts quality-of-life.