A broad look at plant-environment interactions

When faced with complex and difficult questions, such as how plants interact with their environment, sometimes the best approach is to bring together many different approaches. Three separate journals--the American Journal of Botany (AJB), Applications in Plant Sciences (APPS), and the International Journal of Plant Sciences (IJPS)--recently joined efforts to bring attention to these interactions from a variety of perspectives.

The February issues of each journal featured research on plant-environment interactions--each from a different angle. Articles in AJB looked at plant stress, reproduction, and mutualisms; articles in APPS focused on novel methods and tools to study plant-environment interactions; and articles in IJPS focused on the paleobotanical and morphological perspectives.

"The breadth of work in these special issues and sections speaks to how modern plant biology pulls from across these disciplines," said Dr. Katy Heath, Associate Professor of Plant Biology at the University of Illinois, and one of the editors of the AJB special issue. For example, "Understanding how plants will respond to future climate change takes an interdisciplinary approach that learns from the past (paleoecology, palynology, evolution) and the present (physiology, ecology, genetics)."

Indeed, the scope of the work is quite broad, spanning from computational modeling of ancient climates based on fossil plant community records (Harbert and Baryiames (2020) in APPS) to a study of stressed-out sex-switching in striped maple trees (Blake-Mahmud and Struwe (2020b) in AJB). But as disparate as the topics and methods in these issues may seem, advances in understanding plant-environment interactions in one dimension can meaningfully inform thinking and experimental techniques in another.

In some cases, different techniques were brought to bear on related questions, such as Dr. Courtney Murren's investigations of how soil characteristics affect natural selection on root traits, and phenotypic plasticity, in Arabidopsis thaliana. Dr. Murren used phenotypic analysis of wild populations growing in the field and in a common garden experiment to investigate natural selection on root traits (Murren et al. (2020) in AJB). She also used mutant gene lines grown in different soil nutrient conditions to study the effect of soil on phenotypic plasticity (Murren et al. (2020) in IJPS). The answers to these different questions, asked at different scales and delivered through different methodologies, help fill in puzzle pieces as to how root traits evolve in response to soil characteristics.

Different fields studying plant-environment interactions can inform each other on a theoretical or conceptual basis, and understanding the broader picture of how plants interact with their environment can also help researchers take a step back and appreciate a broader perspective on their system. "It's a huge challenge, but a worthy one, to think beyond one's study system and particular interaction (biotic or abiotic) to draw analogies with other responses," said Dr. Heath. "It can help us better see how plants leverage their genomes to simultaneously do many things---they are interacting with microbes, they are being consumed by herbivores, they are attempting to be pollinated (or not!)---all while optimizing their responses to myriad abiotic stressors (drought, salt, nutrient limitation)."

Beyond these conceptual dividends, there are real, practical benefits to following researchers in different fields studying other aspects of plant-environment interactions, such as learning new tools, study designs, and techniques. "As one obvious example, the sequencing revolution developed originally in the context of in-depth sequencing of individual genomes," said Dr. Heath, "but look how much we now know about plant-microbiome interactions as a result of our ability to sequence thousands of taxa at once!"

These special issues arose out the 2018 Green Life Science Symposium, an effort to gather diverse researchers together to discuss plant-environment interactions from different perspectives, and to share research from siloed fields. "This takes some willingness to talk across fields, since we tend to run into issues even speaking the same language---since we use the same words to mean different things and different words to mean the same thing!" said Dr. Heath. "But it's already happening." Indeed it is, as these articles show.

Credit: 
Botanical Society of America