Body

Wake Forest University scientists have developed a new research tool in the pursuit of heart medications based on the compound nitroxyl by identifying unique chemical markers for its presence in biological systems.

Nitroxyl, a cousin to the blood-vessel relaxing compound nitric oxide, has been shown in studies to strengthen canine heart beats, but research into its potential benefits for humans has been slowed by a lack of specific detection methods.

Providence, RI – A new study by researchers at Rhode Island Hospital have found a substantial link between increased levels of nitrates in our environment and food with increased deaths from diseases, including Alzheimer's, diabetes mellitus and Parkinson's. The study was published in the Journal of Alzheimer's Disease (Volume 17:3 July 2009).

Washington, DC – In a discovery that they say rebuffs conventional scientific thinking, researchers at Georgetown University Medical Center (GUMC) have discovered a novel way to block the activity of the fusion protein responsible for Ewing's sarcoma, a rare cancer found in children and young adults.

Researchers at the Gladstone Institute of Cardiovascular Disease (GICD) have discovered a key switch that causes stem cells to turn into the type of muscle cells that reside in the wall of blood vessels. The same switch might be used in the future to limit growth of vascular muscle cells that cause narrowing of arteries leading to heart attacks and strokes, limit formation of blood vessels that feed cancers, or make new blood vessels for organs that are not getting enough blood flow.

PITTSBURGH, July 5 – Using zebrafish, researchers at the University of Pittsburgh have identified and described an enzyme inhibitor that allows them to increase the number of cardiac progenitor cells and therefore influence the size of the developing heart. The findings are described in the advance online version of Nature Chemical Biology.

A newly discovered mechanism controls whether muscle cells in blood vessels hasten the development of both atherosclerosis and Alzheimer's disease, according to an article published online today in the journal Nature.

The study was led by the Gladstone Institute of Cardiovascular Disease (GICD) in San Francisco, with key contributions from the Aab Cardiovascular Research Institute at the University of Rochester School of Medicine and Dentistry.

Scientists at Singapore's Bioprocessing Technology Institute (BTI) have made a novel discovery about how the gene, "Fas-apoptosis inhibitory molecule" (FAIM), protects both immune and liver cells from apoptosis, or programmed cell death.

Their research is published in the current journal Cell Death and Differentiation.

The scientists, Jianxin Huo, Ph.D., and Shengli Xu, Ph.D., also discovered that this process may possibly be manipulated for clinical application and proposed the first-to-be-published in-animal model to study the role of FAIM in detail.

Existing drugs used in the treatment of Parkinson's disease could be repositioned for use in the treatment of extreme drug-resistant tuberculosis, which kills about 2 million people each year, according to a study led by researchers at the University of California, San Diego. The rise of these strains of TB throughout the world, including industrialized countries, poses a great threat to human health.

Research led by the German Institute of Human Nutrition (DIfE) has identified a new gene associated with diabetes, together with a mechanism that makes obese mice less susceptible to diabetes. A genomic fragment that occurs naturally in some mouse strains diminishes the activity of the risk gene Zfp69. The researchers also found that the corresponding human gene (ZNF642) is especially active in overweight individuals with diabetes.

UCSF researchers have identified a new "feed-forward" pathway linking estrogen receptors in the membrane of the uterus to a process that increases local estrogen levels and promotes cell growth.

The research is significant in helping determine why tamoxifen and other synthetic estrogens are linked to increased rates of endometriosis and uterine cancer, and identifies a pathway that could be targeted in drug therapies for those diseases, researchers say.

Certain mutations in the DNA of the hepatitis B virus (HBV) are associated with the development of liver cancer and may help predict which patients with HBV infections are at increased risk of the disease, according to a large meta-analysis in the Journal of the National Cancer Institute, published online July 2.

Several statistical and biological issues need to be addressed in order to improve biomarker identification for early detection of cancer, according to a commentary published online July 2 in the Journal of the National Cancer Institute.

The biomarker pipeline to develop and evaluate cancer screening tests includes the identification of promising biomarkers to detect cancers early and the initial and definitive evaluation of biomarkers for cancer screening.

Practice, practice, practice might get you to Carnegie Hall, but for aspiring musicians, there's new evidence that genes may influence one's ability to get there, as well.

Perfect pitch, also known as absolute pitch, is the rare ability to recognize and name musical notes without any reference pitch for comparison, detecting, for instance, A before middle C. The rarity of the aptitude contrasts with the common ability to immediately recognize and name colors, distinguishing pink from red or azure from blue.

The ability of plants to tell the time, a mechanism common to all living beings, enables them to survive, grow and reproduce. In a study published in the latest issue of the prestigious journal Ecology Letters, an international team has studied this circadian clock from a molecular viewpoint and has found an ecological implication: it makes climate change scenarios and CO2 level figures more accurate.

CAMBRIDGE, Mass.—A team from MIT and the Centers for Disease Control and Prevention has found a genetic explanation for why the new H1N1 "swine flu" virus has spread from person to person less effectively than other flu viruses.

The H1N1 strain, which circled the globe this spring, has a form of surface protein that binds inefficiently to receptors found in the human respiratory tract, the team reports in the July 2 online edition of Science.