Arnie Miller, University of Cincinnati professor of paleontology in the McMicken College of Arts & Sciences, and co-author Michael Foote of the University of Chicago publish their research in the Nov. 20 issue of Science with their paper, "Epicontinental Seas Versus Open-Ocean Settings: The Kinetics of Mass Extinction and Origination."
Body
In a massive survey of genetic diversity in maize, also known as corn, researchers across the United States, have developed a gene map that should pave the way to significant improvements in a plant that is a major source of food, fuel, animal feed and fiber around the world.
Maternal depression can worsen asthma symptoms in their children, according to research from Johns Hopkins Children's Center published online in the Journal of Pediatric Psychology.
ITHACA, N.Y. - A new study of maize has identified thousands of diverse genes in genetically inaccessible portions of the genome. New techniques may allow breeders and researchers to use this genetic variation to identify desirable traits and create new varieties that were not easily possible before.
Scientists at Johns Hopkins and their colleagues have developed sugar-coated polymer strands that selectively kill off cells involved in triggering aggressive allergy and asthma attacks. Their advance is a significant step toward crafting pharmaceuticals to fight these often life-endangering conditions in a new way.
WHAT: New discoveries about anti-HIV antibodies may bring researchers a step closer to creating an effective HIV vaccine, according to a new paper co-authored by scientists at the Vaccine Research Center of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.
A team led by Penn State's Ross Hardison, T. Ming Chu Professor of Biochemistry and Molecular Biology, has taken a large step toward unraveling how regulatory proteins control the production of gene products during development and growth. Working with collaborators including Drs. Mitchell Weiss and Gerd Blobel at Children's Hospital of Philadelphia, they focused specifically on the complex process of producing red blood cells (erythrocytes). These cells contain large amounts of hemoglobin, a molecule essential for transporting oxygen throughout the body.
RUSTON, La. – A team of researchers at Louisiana Tech University has found that a naturally occurring microorganism acts as a natural herbicide against giant salvinia.
Giant salvinia is a noxious and invasive aquatic weed that can block all sunlight penetration into bodies of water, altering entire ecosystems. Under ideal conditions, it's been reported that giant salvinia can double in size every three days.
AMES, Iowa –The maize genome sequence is now complete thanks to a decoding effort so challenging even the epic aptitudes of secret agent 007—James Bond—would have come up short.
Iowa State University (ISU) Plant Sciences Institute (PSI) researchers contributed to the raw data assembly and much of the ongoing functional analysis work for this multi-institutional, $32 million, National Science Foundation-funded effort led by the Genome Center at Washington University School of Medicine in St. Louis.
MADISON — Leaf-cutter ants, which cultivate fungus for food, have many remarkable qualities.
Here's a new one to add to the list: the ant farmers, like their human counterparts, depend on nitrogen-fixing bacteria to make their gardens grow. The finding, reported this week (Nov. 20) in the journal Science, documents a previously unknown symbiosis between ants and bacteria and provides insight into how leaf-cutter ants have come to dominate the American tropics and subtropics.
MADISON — This week, scientists are revealing the genetic instructions inside corn, one of the big three cereal crops. Corn, or maize, has one of the most complex sequences of DNA ever analyzed, says University of Wisconsin-Madison genomicist David Schwartz, who was one of more than 100 authors in the article in the journal Science.
"The maize genome is a true maze — full of confusing repeats and dead-ends that have troubled would-be sequencers for years," says Schwartz.
Maize is an important crop in many countries of the world. It is widely used for human consumption, animal feed, and industrial materials. It also is considered an exemplar plant species for studying domestication, molecular evolution, and genome architecture. The authors of the research presented in this special collection used the first description of the B73 maize genome to probe some of the most intriguing questions in genetics and plant biology.
Scientists from the University of Arizona led by Arizona Genomics Institute director Rod A. Wing and from collaborating institutions have deciphered the complete genetic code of the maize plant for the first time.
The researchers, who have been collaborating for the past four years on the National Science Foundation-funded Maize Genome Sequencing Project, have provided the complete sequence and structures of maize genes and their locations, in linear order, on both the genetic and physical maps of maize.
When it comes to corn, 1 + 1 = more than 2: The offspring of two inbred strains tend to be superior to both of their parents. Characterizing the gene-level variability that leads to this phenomenon, known as heterosis or hybrid vigor, could boost our ability to custom-tailor crops for specific traits, such as high protein content for human consumption or high glucose content for biomass fuel.