The Sunday roast on our dinner tables has the potential to be packed with bags more natural flavour, say scientists at The University of Nottingham.
Professor Kin-Chow Chang, of the University's School of Veterinary Medicine and Science, is leading a three-year study into two different muscle fibre types that play a huge part in the appearance, texture and taste of the meat that we eat.
In the long-term, the results from studies like these could arm farmers with more information on which animals to use for breeding to achieve the tastiest cuts of meat without sacrificing high production values.
Professor Chang's study, funded with more than £400,000 from the Biotechnology and Biological Sciences Research Council, will focus on the differences between fast muscle fibres and slow muscle fibres.
Slow muscle fibres, otherwise known as oxidative or red muscle, is associated with the most sought-after qualities of meat such as flavour intensity or tenderness whereas meat from fast muscle fibres, which tend to be bulkier and grow more rapidly, is considered to be tougher and drier.
Packed with capillaries, mitochondria and myoglobin that give the meat its darker colour, slow muscle fibres are more efficient at converting sugar and fatty acids to energy and, although slower to contract, will therefore function for longer before tiring. These are usually associated with animals that are living free range and are on the move for longer and produce flavoursome meat.
Farmers and consumers are currently faced with the problem that breeds chosen because they can grow quicker and produce larger quantities of meat and are therefore economically more attractive tend to predominantly produce fast muscle.
Professor Chang said: "Genetically, we have been very successful in breeding animals that can grow very quickly but the down side is that comes at the price of eating quality.
"The work we are doing focuses on finding out more at a molecular level about how fast muscle can switch to slow muscle and could lead to a better understanding of how to genetically choose animals for breeding that will produce better quality meat."
The issue of fast and slow muscle affects all meat but is particularly pertinent to pork, chicken, lamb and beef in which animals are chosen for breeding according to how fast they grow and how much meat each animal can produce.
For example, in poultry farming broiler chickens take just six weeks to grow from hatching to slaughter and grow much faster than hens produced for egg production. However, the breast meat produced is often criticised as being bland in flavour.
The lab-based science being conducted at Nottingham is concentrating on a particular cell signalling pathway called the calcineuring pathway which, if stimulated, causes muscle to switch from fast to slow.
Learning more about this process could lead to the identification of genes important in the growth of slow muscle and allow farmers to use the wealth of genetic diversity that exists in animals to breed naturally tastier and succulent meat.
Source: University of Nottingham