Acne drug prevents HIV breakout

The idea for using minocycline as an adjunct to HAART resulted when the Hopkins team learned of research by others on rheumatoid arthritis patients showing the anti-inflammatory effects of minocycline on T cells. The Hopkins group connected the dots between that study with previous research of their own showing that minocycline treatment had multiple beneficial effects in monkeys infected with SIV, the primate version of HIV. In monkeys treated with minocycline, the virus load in the cerebrospinal fluid, the viral RNA in the brain and the severity of central nervous system disease were significantly decreased. The drug was also shown to affect T cell activation and proliferation.

"Since minocycline reduced T cell activation, you might think it would have impaired the immune systems in the macaques, which are very similar to humans, but we didn't see any deleterious effect," says Gregory Szeto, a graduate student in the Department of Cellular and Molecular Medicine working in the Retrovirus Laboratory at Hopkins.

"This drug strikes a good balance and is ideal for HIV because it targets very specific aspects of immune activation."

The success with the animal model prompted the team to study in test tubes whether minocycline treatment affected latency in human T cells infected with HIV. Using cells from HIV-infected humans on HAART, the team isolated the "resting" immune cells and treated half of them with minocycline. Then they counted how many virus particles were reactivated, finding completely undetectable levels in the treated cells versus detectable levels in the untreated cells.

"Minocycline reduces the capability of the virus to emerge from resting infected T cells," Szeto explains. "It prevents the virus from escaping in the one in a million cells in which it lays dormant in a person on HAART, and since it prevents virus activation it should maintain the level of viral latency or even lower it. That's the goal: Sustaining a latent non-infectious state."

The team used molecular markers to discover that minocycline very selectively interrupts certain specific signaling pathways critical for T cell activation. However, the antibiotic doesn't completely obliterate T cells or diminish their ability to respond to other infections or diseases, which is crucial for individuals with HIV.

"HIV requires T cell activation for efficient replication and reactivation of latent virus," Clement says, "so our new understanding about minocyline's effects on a T cell could help us to find even more drugs that target its signaling pathways."

Janice E. Clements, Ph.D., Mary Wallace Stanton Professor of Faculty Affairs, Vice Dean for Faculty, and Professor of Molecular and Comparative Pathobiology at the Johns Hopkins University School of Medicine, discusses her team?s discovery that a safe, inexpensive antibiotic will improve on the current treatment regimens of HIV-infected patients.

(Photo Credit: Johns Hopkins Medicine)

This is Janice E. Clements, Ph.D., Mary Wallace Stanton Professor of Faculty Affairs, Vice Dean for Faculty, and Professor of Molecular and Comparative Pathobiology at the Johns Hopkins University School of Medicine.

(Photo Credit: Johns Hopkins Medicine)

Source: Johns Hopkins Medical Institutions