AAV9 gene therapy vector dramatically increases life span in krabbe disease mouse model

image: Human Gene Therapy presents reports on the transfer and expression of genes in mammals, including humans.

Image: 
Mary Ann Liebert, Inc., publishers

New Rochelle, NY, August 12, 2019--An optimized and newly engineered form of the adeno-associated vector 9 (AAV9) vector used to deliver the galactosylceramidase gene to a mouse model of the inherited neurogenerative and rapidly fatal form of Krabbe dis-ease improved clinical symptoms and prolonged median survival by 275%. Two-day old mice treated with a single injection of the systemic gene therapy had a significant increase in median life span to 150 days, compared to 41 days for the untreated mice, as reported in the study published in Human Gene Therapy, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. Click here to read the full-text article free on the Human Gene Therapy website through September 12, 2019.

The article entitled "An Engineered Galactosylceramidase Construct Improves AAV Gene Therapy for Krabbe Disease in Twitcher Mice" was coauthored by Dongsheng Duan, Steven LeVine, and colleagues from the University of Missouri (Columbia), Uni-versity of Missouri School of Medicine and College of Veterinary Medicine, and Univer-sity of Kansas Medical Center (Kansas City).

The researchers describe the construction and characterization of the specially engineered AAV9 vector, built on the codon-optimized mouse galactosylceramidase coding se-quence, and designed for improved protein delivery to the central nervous system and enhanced secretion of the galactosylceramidase enzyme. At 5 weeks of age, the treated mice had better body weight and motor function than the untreated mice. The longest-lived treated mouse survived to 180 days.

"This work shows dramatic in vivo proof-of-principle, indicating a robust therapeutic ef-fect from this optimized vector," says Editor-in-Chief Terence R. Flotte, MD, Celia and Isaac Haidak Professor of Medical Education and Dean, Provost, and Executive Deputy Chancellor, University of Massachusetts Medical School, Worcester, MA.

Research reported in this publication was supported by the National Institutes of Health un-der Award NumbersP30HD02528, 9P2OGM104936, and S10RR027564. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Credit: 
Mary Ann Liebert, Inc./Genetic Engineering News