Heavens

Using more than half a century of observations, Japanese astronomers have discovered that the microwaves coming from the Sun at the minimums of the past five solar cycles have been the same each time, despite large differences in the maximums of the cycles.

In Japan, continuous four-frequency solar microwave observations (1, 2, 3.75 and 9.4 GHz) began in 1957 at the Toyokawa Branch of the Research Institute of Atmospherics, Nagoya University. In 1994 the telescopes were relocated to NAOJ Nobeyama Campus, where they have continued observations up to the present.

Equipped with Newton's law of universal gravitation (published in Principia 330 years ago) and powerful computational resources (used to apply the law to more than 10,000 interacting bodies), a young Brazilian researcher and his former postdoctoral supervisor have just proposed a new physical model to explain the origin of water on Earth and the other Earth-like objects in the Solar System.

When our Sun erupts with giant explosions -- such as bursts of radiation called solar flares -- we know they can affect space throughout the solar system as well as near Earth. But monitoring their effects requires having observatories in many places with many perspectives, much the way weather sensors all over Earth can help us monitor what's happening with a terrestrial storm.

Astrophysicists from MSU (Russia) and his colleagues from Italy and Russian Academy of Sciences have found the first observational evidence for a contracting white dwarf. Constant high spin-up rate of a star of this type, located in an enigmatic binary system, can be easily explained if the white dwarf is contracting, the researchers argue. The discovery is reported in the Monthly Notices of the Royal Astronomical Society.

Japan -- Stars like our Sun eject large amounts of gas and dust into space, containing various elements and compounds. Asymptotic giant branch -- AGB -- phase stars, near their end of life, are particularly significant sources of such substances in our galaxy.

Formation of dust around AGB stars has been considered to play an important role in triggering acceleration of stellar wind, but the detailed mechanism of this acceleration has not been well explained.

Light from a supernova explosion in the nearby starburst galaxy M82 is reverberating off a huge dust cloud in interstellar space.

The supernova, called SN 2014J, occurred at the upper right of M82, and is marked by an "X." The supernova was discovered on Jan. 21, 2014.

A group of Brazilian astronomers observed a pair of celestial objects rarely seen in the Milky Way: a very low-mass white dwarf and a brown dwarf.

What makes this binary system so unique is its origin: the white dwarf's existence was prematurely cut off by its companion, a brown dwarf, which caused its early death through "malnutrition" or loss of matter.

Supernovae, the explosions of stars, have been observed by the thousands. And in all cases, the transient astronomical events signaled the death of those stars.

Now, astrophysicists at UC Santa Barbara and astronomers at Las Cumbres Observatory (LCO) have reported a remarkable exception: a star that exploded multiple times over a period of more than 50 years. Their observations, published in the journal Nature, are challenging existing theories on these cosmic catastrophes.

A Chalmers-led team of astronomers has for the first time observed details on the surface of an aging star with the same mass as the Sun. Alma:s images show that the star is a giant, its diameter twice the size of Earth's orbit around the Sun, but also that the star's atmosphere is affected by powerful, unexpected shock waves. The research is published in Nature Astronomy on 30 October 2017.

AMHERST, Mass. - Astronomers using the Large Millimeter Telescope (LMT), which is operated jointly by the University of Massachusetts Amherst and Mexico's Instituto Nacional de Astrofísica, Óptica y Electrónica, report today in Nature Astronomy that they have detected the second most distant dusty, star-forming galaxy ever found in the universe - born in the first one billion years after the Big Bang.