Astronomers have discovered that all galaxies rotate once every billion years, no matter how big they are.

The Earth spinning around on its axis once gives us the length of a day, and a complete orbit of the Earth around the Sun gives us a year.

"It's not Swiss watch precision," said Professor Gerhardt Meurer from the UWA node of the International Centre for Radio Astronomy Research (ICRAR).

Scientists report the existence of 15 new planets -- including one 'super-Earth' that could harbor liquid water -- orbiting small, cool stars near our solar system. These stars, known as red dwarfs[1], are of enormous interest for studies of planetary formation and evolution.

A research team led by Teruyuki Hirano of Tokyo Institute of Technology's Department of Earth and Planetary Sciences has validated 15 exoplanets[2] orbiting red dwarf systems.

The more solar observatories, the merrier: Scientists have developed new models to see how shocks associated with coronal mass ejections, or CMEs, propagate from the Sun -- an effort made possible only by combining data from three NASA satellites to produce a much more robust mapping of a CME than any one could do alone.

This spectacular and unusual image shows part of the famous Orion Nebula, a star formation region lying about 1350 light-years from Earth.

Quantum mechanics is the branch of physics governing the sometimes-strange behavior of the tiny particles that make up our universe. Equations describing the quantum world are generally confined to the subatomic realm--the mathematics relevant at very small scales is not relevant at larger scales, and vice versa. However, a surprising new discovery from a Caltech researcher suggests that the Schrödinger Equation--the fundamental equation of quantum mechanics--is remarkably useful in describing the long-term evolution of certain astronomical structures.

A research team of multiple institutes, including the National Astronomical Observatory of Japan and University of Tokyo, released an unprecedentedly wide and sharp dark matter map based on the newly obtained imaging data by Hyper Suprime-Cam on the Subaru Telescope. The dark matter distribution is estimated by the weak gravitational lensing technique. The team located the positions and lensing signals of the dark matter halos and found indications that the number of halos could be inconsistent with what the simplest cosmological model suggests.

A team of astronomers led by Prof. Judd Bowman of Arizona State University unexpectedly stumbled upon "dark matter," the most mysterious building block of outer space, while attempting to detect the earliest stars in the universe through radio wave signals, according to a study published this week in Nature.

Maunakea, Hawaii - An international team of astronomers led by the Max Planck Institute for Astronomy (MPIA) has made a surprising discovery about the birthplace of groups of stars located in the halo of our Milky Way galaxy.

These halo stars are grouped together in giant structures that orbit the center of our galaxy, above and below the flat disk of the Milky Way. Researchers thought they may have formed from debris left behind by smaller galaxies that invaded the Milky Way in the past.

Space weather emitted by Proxima Centauri, the star closest to our sun, may make that system rather inhospitable to life after all.

Using data from the Atacama Large Millimeter/submillimeter Array (ALMA), a team of astronomers discovered that a powerful stellar flare erupted from Proxima Centauri last March. This finding, published in the Astrophysical Journal Letters, raises questions about the habitability of our solar system's nearest exoplanetary neighbor, Proxima b, which orbits Proxima Centauri.

A new analysis of data from two lunar missions finds evidence that the Moon's water is widely distributed across the surface and is not confined to a particular region or type of terrain. The water appears to be present day and night, though it's not necessarily easily accessible.