The ESA (European Space Agency) and NASA mission SOHO -- short for Solar and Heliospheric Observatory -- got a visit from an old friend this week when comet 96P entered its field of view on Oct. 25, 2017. The comet entered the lower right corner of SOHO's view, and skirted up and around the right edge before leaving on Oct. 30. SOHO also spotted comet 96P in 1996, 2002, 2007 and 2012, making it the spacecraft's most frequent cometary visitor.

Proxima Centauri is the closest star to the Sun. It is a faint red dwarf lying just four light-years away in the southern constellation of Centaurus (The Centaur). It is orbited by the Earth-sized temperate world Proxima b, discovered in 2016 and the closest planet to the Solar System. But there is more to this system than just a single planet. The new ALMA observations reveal emission from clouds of cold cosmic dust surrounding the star.

The unveiling this summer of the most accurate cosmic picture ever taken of the distribution of dark matter has left astrophysicists feeling both delighted and frustrated.

On the one hand, the new picture--taken of the "grown-up" universe, over the latter half of its 13.8-billion-year history--closely agrees with the "baby" pictures separately taken in recent years. On the other hand, this agreement leaves little room for the discovery of new physics that could reveal the identity of dark matter and an even more mysterious phenomenon, dark energy.

A giant planet - the existence of which previously thought extremely unlikely - discovered around a small star by an international collaboration of astronomers, with University of Warwick taking a leading role

NGTS-1b is the largest planet compared to the size of its companion star ever discovered in universe - contradicts theories that a planet of this size could not be formed by such a small star

Discovered using the state-of-the-art Next-Generation Transit Survey observing facility, designed to search for transiting planets on bright stars

A giant planet, which should not exist according to planet formation theory, has been discovered around a distant star. The new research is presented in a paper recently accepted for publication in the journal Monthly Notices of the Royal Astronomical Society.

Jupiter's intense northern and southern lights pulse independently of each other according to new UCL-led research using ESA's XMM-Newton and NASA's Chandra X-ray observatories.

The study, published today in Nature Astronomy, found that very high-energy X-ray emissions at Jupiter's south pole consistently pulse every 11 minutes. Meanwhile those at the north pole are erratic: increasing and decreasing in brightness, independent of the south pole.

Researchers have pinpointed the date of what could be the oldest solar eclipse yet recorded. The event, which occurred on 30 October 1207 BC, is mentioned in the Bible, and could have consequences for the chronology of the ancient world.

Using a combination of the biblical text and an ancient Egyptian text, the researchers were then able to refine the dates of the Egyptian pharaohs, in particular the dates of the reign of Ramesses the Great. The results are published in the Royal Astronomical Society journal Astronomy & Geophysics.

Though stars and galaxies fill our night sky, most of the matter in the universe resides in the dark voids in between. Spread out over unfathomable distances, this cold, diffuse gas between galaxies -- called the intergalactic medium, or IGM for short -- hardly emits any light, making it difficult to study.

September 2017 saw a spate of solar activity, with the Sun emitting 27 M-class and four X-class flares and releasing several powerful coronal mass ejections, or CMEs, between Sept. 6-10. Solar flares are powerful bursts of radiation, while coronal mass ejections are massive clouds of solar material and magnetic fields that erupt from the Sun at incredible speeds.

Researchers based millions of kilometres from Mars have unveiled new evidence for how contemporary features are formed on the Red Planet. Their innovative lab-based experiments on carbon dioxide (CO2) sublimation - the process by which a substance changes from a solid to a gas without an intermediate liquid phase - suggest the same process is responsible for altering the appearance of sand dunes on Mars.