Tech

New research from the University of Southampton has shown that blind and visually impaired people have the potential to use echolocation, similar to that used by bats and dolphins, to determine the location of an object.

Melbourne researchers have identified an immune protein that has the potential to stop or reverse the development of type 1 diabetes in its early stages, before insulin-producing cells have been destroyed.

The discovery has wider repercussions, as the protein is responsible for protecting the body against excessive immune responses, and could be used to treat, or even prevent, other immune disorders such as multiple sclerosis and rheumatoid arthritis.

A humanoid robot can receive an object handed to it by a person with something approaching natural, human-like motion thanks to a new method developed by scientists at Disney Research, Pittsburgh in a project partially funded by the International Center for Advanced Communication Technologies (interACT) at Carnegie Mellon University and Karlsruhe Institute of Technology (KIT).

By day, insects provide the white noise of the South, but the night belongs to the amphibians. In a typical year, the Southern air hangs heavy from the humidity and the sounds of wildlife.

The Southeast, home to more than 140 species of frogs, toads and salamanders, is the center of amphibian biodiversity in our nation. If the ponds and swamps are the auditorium for their symphonic choruses, the scientists of the U.S. Geological Survey's Amphibian Research and Monitoring Initiative, or ARMI, have front-row seats.

A new, highly sensitive blood test that quickly detects even the lowest levels of malaria parasites in the body could make a dramatic difference in efforts to tackle the disease in the UK and across the world, according to new research published in the Journal of Infectious Diseases.

Frustration led to revelation when Rice University scientists determined how graphene might be made useful for high-capacity batteries.

Calculations by the Rice lab of theoretical physicist Boris Yakobson found a graphene/boron anode should be able to hold a lot of lithium and perform at a proper voltage for use in lithium-ion batteries. The discovery appears in the American Chemical Society's Journal of Physical Chemistry Letters.

(Santa Barbara, Calif.) –– When UC Santa Barbara doctoral student Seeta Sistla and her adviser, environmental studies professor Josh Schimel, went north not long ago to study how long-term warming in the Arctic affects carbon storage, they had made certain assumptions.

In the wake of the sobering news that atmospheric carbon dioxide is now at its highest level in at least three million years, an important advance in the race to develop carbon-neutral renewable energy sources has been achieved. Scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have reported the first fully integrated nanosystem for artificial photosynthesis. While "artificial leaf" is the popular term for such a system, the key to this success was an "artificial forest."

There are no technical or functional reasons for Amazon and Apple to fence off their e-book worlds using proprietary e-book formats.

This is the result of a research study conducted by Professor Dr. Christoph Bläsi and Professor Dr. Franz Rothlauf of Johannes Gutenberg University Mainz (JGU) and handed over today to Neelie Kroes, EU Commissioner for the Digital Agenda, in Brussels.

ANN ARBOR—The type of sensors that pick up the rhythm of a beating heart in implanted cardiac defibrillators and pacemakers are vulnerable to tampering, according to a new study conducted in controlled laboratory conditions.

Implantable defibrillators monitor the heart for irregular beating and, when necessary, administer an electric shock to bring it back into normal rhythm. Pacemakers use electrical pulses to continuously keep the heart in pace.

TORONTO, ON – U of T Engineering researchers, working with colleagues from Carnegie Mellon University, have published new insights into how materials transfer heat, which could lead eventually to smaller, more powerful electronic devices.

Nanomaterials exhibit unique properties that can only unfold when the structures of the material are very small – that is, at the nanoscale. In order to exploit these special properties such as, for example, specific quantum effects it is very important to produce predefined nanostructures in a controlled way and interpret the formation of their shape. Scientists try to understand how to initiate and control the growth of nanomaterials and are exploring different ways to design and build up nanostructures with fine control over shapes.

To reach Canada's goal of reducing greenhouse gas (GHG) emissions to 17 per cent below the 2005 level by the year 2020, federal and provincial governments, led by the Prime Minister and provincial premiers, must reach agreement on what portion of the total GHG reduction will be provided by each province say researchers from the University of Toronto's School of the Environment. Their report is being sent to all Canadian federal and provincial governments, opposition parties and other participants in the climate policy dialogue.

Detecting greenhouse gases in the atmosphere could soon become far easier with the help of an innovative technique* developed by a team at the National Institute of Standards and Technology (NIST), where scientists have overcome an issue preventing the effective use of lasers to rapidly scan samples.

The team, which recently published its findings in the journal Nature Photonics, says the technique also could work for other jobs that require gas detection, including the search for hidden explosives and monitoring chemical processes in industry and the environment.

In ancient Greece, the city-states that waited until their own harvest was in before attacking and destroying a rival community's crops often experienced better long-term success.

It turns out that ant colonies that show similar selectivity when gathering food yield a similar result. The latest findings from Stanford biology Professor Deborah M. Gordon's long-term study of harvester ants reveal that the colonies that restrain their foraging except in prime conditions also experience improved rates of reproductive success.