New research may provide insight as to why, despite progress over the last few decades, women remain underrepresented in math-heavy majors and professions.

In an article published in the January issue of Psychological Science, psychologists Amy Kiefer of the University of California, San Francisco and Denise Sekaquaptewa of the University of Michigan point to an interaction between women's own underlying "implicit" stereotypes and their gender identification as a source for their underperformance and lowered perseverance in mathematical fields.

Scientists at the Scripps Research Institute and the University of Wisconsin have identified two small molecules with promising activity against neurotoxins produced by the Clostridium botulinum, a compound so deadly it has been labeled one of the six highest-risk bioterrorism agents by the Centers for Disease Control and Prevention.

Because of the high cost and limited applicability of currently available treatments, the newly identified compounds have the potential to fill the existing therapy gap and to provide protection against a bioterrorism attack using the toxin.

Carnegie Mellon University's Philip LeDuc predicts the use of artificially created cells could be a potential new therapeutic approach for treating diseases in an ever-changing world. LeDuc, an assistant professor of mechanical and biomedical engineering, penned an article for the January edition of Nature Nanotechnology Journal about the efficacy of using man-made cells to treat diseases without injecting drugs.

A Georgia Tech physics group has discovered how and why the electrical conductance of metal nanowires changes as their length varies. In a collaborative investigation performed by an experimental team and a theoretical physics team, the group discovered that measured fluctuations in the smallest nanowires’ conductance are caused by a pair of atoms, known as a dimer, shuttling back and forth between the bulk electrical leads. Determining the structural properties of nanowires is a big challenge facing the future construction of nanodevices and nanotechnology.

An international team of scientists has discovered that the ubiquitous bacteria that causes most painful stomach ulcers has been present in the human digestive system since modern man migrated from Africa over 60,000 years ago. The research, published online (7 February) by the journal Nature, not only furthers our understanding of a disease causing bacteria but also offers a new way to study the migration and diversification of early humans.A cell of H.pylori, a bacterial pathogen of the human stomach.

Two biologists at Penn State have discovered a master regulator that controls metabolic responses to a deficiency of essential amino acids in the diet. They also discovered that this regulatory substance, an enzyme named GCN2 eIF2alpha kinase, has an unexpectedly profound impact on fat metabolism.

Physicists at JILA have demonstrated that the warmer a surface is, the stronger its subtle ability to attract nearby atoms, a finding that could affect the design of devices that rely on small-scale interactions, such as atom chips, nanomachines, and microelectromechanical systems (MEMS).JILA scientists measured how temperature affects the Casimir-Polder force using an apparatus that holds four small squares of glass inside a vacuum chamber.

Four million people die every year from respiratory diseases such as viral influenza. For elderly people in particular, an infection can be dangerous. What is more, the flu vaccine is not as effective with this risk group as it is with younger people. The reason for this is that with age the fire power of the immune system is reduced. Why this is the case is largely unknown. An international EU project led by the University of Bonn is now starting which aims at shedding light on this.

A new process for creating patterns of individual molecules on a surface combines control of self-assembled monolayers (SAMs) and a soft lithography technique known as microcontact printing. Scientists use the process, known as "microcontact insertion printing" to build surfaces that have molecules with specific functions inserted at known intervals on a surface.

Researchers have constructed a protein out of amino acids not found in natural proteins, discovering that they can form a complex, stable structure that closely resembles a natural protein. Their findings could help scientists design drugs that look and act like real proteins but won't be degraded by enzymes or targeted by the immune system, as natural proteins are.